Do protein motifs read the histone code?
نویسندگان
چکیده
The existence of different patterns of chemical modifications (acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation) of the histone tails led, some years ago, to the histone code hypothesis. According to this hypothesis, these modifications would provide binding sites for proteins that can change the chromatin state to either active or repressed. Interestingly, some protein domains present in histone-modifying enzymes are known to interact with these covalent marks in the histone tails. This was first shown for the bromodomain, which was found to interact selectively with acetylated lysines at the histone tails. More recently, it has been described that the chromodomain can be targeted to methylation marks in histone N-terminal domains. Finally, the interaction between the SANT domain and histones is also well documented. Overall, experimental evidence suggests that these domains could be involved in the recruitment of histone-modifying enzymes to discrete chromosomal locations, and/or in the regulation their enzymatic activity. Within this context, we review the distribution of bromodomains, chromodomains and SANT domains among chromatin-modifying enzymes and discuss how they can contribute to the translation of the histone code.
منابع مشابه
It Takes a PHD to Read the Histone Code
The pattern of histone modifications, called the histone code, influences transitions between chromatin states and the regulation of transcriptional activity. Four recent papers describe how plant homeodomain (PHD) finger proteins read part of this code. The PHD finger may promote both gene expression and repression through interactions with trimethylated lysine 4 on histone 3 (H3K4), a univers...
متن کاملUHRF1 Links the Histone code and DNA Methylation to ensure Faithful Epigenetic Memory Inheritance.
Epigenetics is the study of the transmission of cell memory through mitosis or meiosis that is not based on the DNA sequence. At the molecular level the epigenetic memory of a cell is embedded in DNA methylation, histone post-translational modifications, RNA interference and histone isoform variation. There is a tight link between histone post-translational modifications (the histone code) and ...
متن کاملHistone recognition and nuclear receptor co-activator functions of Drosophila cara mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3.
MLL2 and MLL3 histone lysine methyltransferases are conserved components of COMPASS-like co-activator complexes. In vertebrates, the paralogous MLL2 and MLL3 contain multiple domains required for epigenetic reading and writing of the histone code involved in hormone-stimulated gene programming, including receptor-binding motifs, SET methyltransferase, HMG and PHD domains. The genes encoding MLL...
متن کاملHow do RNA sequence, DNA sequence, and chromatin properties regulate splicing?
Recent genome-wide studies have revealed a remarkable correspondence between nucleosome positions and exon-intron boundaries, and several studies have implicated specific histone modifications in regulating alternative splicing. In addition, recent progress in cracking the 'splicing code' shows that sequence motifs carried on the nascent RNA molecule itself are sufficient to accurately predict ...
متن کاملBeyond the double helix: writing and reading the histone code.
Chromatin is the physiological carrier of not only genetic information, encoded in the DNA, but also of epigenetic information including DNA methylation and histone modifications. As such histone modifications are involved in many aspects of nuclear processes including gene regulation and chromosome segregation. Recently, a 'histone code' hypothesis was put forward to explain how patterns of hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioEssays : news and reviews in molecular, cellular and developmental biology
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2005